The ADI method for bounded real and positive real Lur'e equations

نویسندگان

  • Arash Massoudi
  • Mark R. Opmeer
  • Timo Reis
چکیده

We propose an algorithm for the numerical solution of the Lur’e equations in the bounded real and positive real lemma for stable systems. The recently developed ADI iteration for algebraic Riccati equations is generalized to Lur’e equations. The algorithm provides approximate solutions in low-rank factored form. We prove that the sequence of approximate solutions is monotonically increasing with respect to definiteness. If the shift parameters are chosen appropriately, the sequence is proven to be convergent to the minimal solution of the Lur’e equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some properties of analytic functions related with bounded positive real part

In this paper, we define new subclass of analytic functions related with bounded positive real part, and coefficients estimates, duality and neighborhood are considered.

متن کامل

روش مسیر یابی ذره به منظور پیش بینی حرکت نفت در دریا

A two-dimensional two-phase numerical model is developed to predict transport and fate of oil slicks which resulted the concentration distribution of oil on the water surface. Two dimensional governing equation of fluid flow which consists mass and momentum conservation was solved using the finite difference method on the structured staggered grid system. The resulted algebric equations were so...

متن کامل

Computing real low-rank solutions of Sylvester equations by the factored ADI method

We investigate the factored ADI iteration for large and sparse Sylvester equations. A novel low-rank expression for the associated Sylvester residual is established which enables cheap computations of the residual norm along the iteration, and which yields a reformulated factored ADI iteration. The application to generalized Sylvester equations is considered as well. We also discuss the efficie...

متن کامل

An Extension to Imprecise Data Envelopment Analysis

The standard data envelopment analysis (DEA) method assumes that the values for inputs and outputs are exact. While DEA assumes exact data, the existing imprecise DEA (IDEA) assumes that the values for some inputs and outputs are only known to lie within bounded intervals, and other data are known only up to an order. In many real applications of DEA, there are cases in which some of the input ...

متن کامل

An Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation

Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerische Mathematik

دوره 135  شماره 

صفحات  -

تاریخ انتشار 2017